
Copyright© 2013 KRvW Associates, LLC

Security Testing Fundamentals
SecAppDev 2013

Leuven, Belgium
4-8 March 2013

Copyright© 2013 KRvW Associates, LLC

Confessions of a pen tester

Typical scenario looks like this
–Customer calls and asks for a test
–2-3 weeks prior to product going “live”
–Security test required by auditors
–Want to ensure “hackers can’t get in”
–How secure are we?

What problems do you see here?

2

Copyright© 2013 KRvW Associates, LLC

The problem

Too many organizations have either:
–Neglected security testing entirely
–Assumed (incorrectly) their QA testing will catch security

issues
–Adopted a late-cycle penetration test process as their sole

security test

When you ask the wrong questions, you won’t get
the answers you need!

3

Copyright© 2013 KRvW Associates, LLC

Security testing is different

Security focus should primarily be on non-
functional aspects of the software
–Not just focused on what the software can or should do
–Active deception of software intent
–Need to test every aspect of app

QA team often has a tough time “thinking like an
attacker”

4

Copyright© 2013 KRvW Associates, LLC

Uninformed “black box” testing

Advantages
–Unencumbered by prejudices of how things “should”

behave
–Accurately emulates what an outsider might find
–Can be inexpensive and quick
Disadvantages
–Coverage is abysmal (10-20% LOC not abnormal)
–No notion of risk prioritization

5

Copyright© 2013 KRvW Associates, LLC

Informed testing

Advantages
–Effort can be allocated by risk priority
–Can ensure high coverage through careful test design
–Emulate an insider attack
Disadvantages
–Functional “blinders” might miss things

6

Copyright© 2013 KRvW Associates, LLC

Case study: format strings

You are the engineering team leader of an
embedded sw open source project
The chaos computer club just posted a paper
detailing a newly discovered format string
vulnerability ‘sploit
Your boss sends you a memo and asks, “are we
ok?”
Your src includes: if (mystate==FOO) {
 printf(userstr);}

7

Copyright© 2013 KRvW Associates, LLC

Testing methods

Common practices include
–Fuzzing
–Penetration testing
–Dynamic validation
–Risk-based testing

8

Copyright© 2013 KRvW Associates, LLC

Fuzzing

Basic principle
– Hit software with random/

garbage
– Look for unanticipated

failure states
– Observe and record
Any good?
– MS estimates 20-25% of

bugs found this way
– Watch for adequate coverage

9

Copyright© 2013 KRvW Associates, LLC

Fuzzing techniques

Smart fuzzing and dumb fuzzing
–“Dumb” refers to using random, unchosen data
–“Smart” implies using chosen garbage
–Example - fuzzing a graphic renderer

lDumb approach is to throw it randomness
lSmart approach is to study its expected file formats and to

construct garbage that “looks” like what it expects, but isn’t quite
right

10

Copyright© 2013 KRvW Associates, LLC

What to fuzz

Fuzz targets
–File fuzzing
–Network fuzzing
–Other I/O interfaces

Constructing “dumb” scenarios for each is easy, so
let’s look at some smart approaches

11

Copyright© 2013 KRvW Associates, LLC

File fuzzing

Smart scenarios
–Really study the expected file format(s)
–Look for things like parameters in data
–Construct nonsensical input data parameters

lNegative or huge bitrate values for audio/video
lGraphic dimensions

12

Copyright© 2013 KRvW Associates, LLC

Network fuzzing

Smart scenarios
–Really study the software-level network interfaces

lCoverage here must include state
–Look for things like flags, ignoring state
–Construct nonsensical input data parameters

l“Insane” packet sizes
lData overflows and underflows

13

Copyright© 2013 KRvW Associates, LLC

Interface fuzzing

Smart scenarios for all other “surfaces”
–Really study the data interfaces

lAPIs, registry, environment, user inputs, etc.
–Construct nonsensical input data parameters

lOverflows and underflows
lDevice names when file names are expected

14

Copyright© 2013 KRvW Associates, LLC

Automation is your friend...

…and your foe
–Lots of fuzz products are

appearing
–How can one size possibly

fit all?
–Best fuzzing tools are in fact

frameworks

Examples
OWASP’s JBroFuzz,
PEACH, SPI Fuzzer

15

Copyright© 2013 KRvW Associates, LLC

Finding value in pen testing

Enough with what’s wrong
–Consider informed testing
–Quick form of attack resistance analysis
–Risk-based prioritization
–Nightmare scenarios from architectural risk analysis
–Abuse case stories
–Start with vendor tools, but then roll your sleeves up and

do it yourself
lScripting tools can help tremendously

16

Copyright© 2013 KRvW Associates, LLC

Pen testing strategies

Inside => out approach is
most likely to yield
meaningful results
– It doesn’t hurt to also do an

outside => in test
–One very small part of

overall testing
–Adversarial approach
–Surprises happen

17

Copyright© 2013 KRvW Associates, LLC

Basic pen testing methods

Target scan
– Take inventory of target space
Vulnerability scan
– What potential preliminary weaknesses are present?
Vulnerability exploit
– Attempt entry
Host-based discovery
– What interesting “stuff” is on each breached system?
Recursive branching
– Repeat until finished

18

Copyright© 2013 KRvW Associates, LLC

Pen test results

Results need to be actions for dev team
–Traditional pen test teams report to IT
–Need to adapt to different audience
–Map findings to modules and code

19

Copyright© 2013 KRvW Associates, LLC

Automation is really your friend

Pen test tool market is (arguably) one of the
strongest in the security business
–Choices abound in commercial and open source
–Many are quite mature
–Almost a commodity market
Examples include
–Nmap, nessus, Metasploit, ISS, Core Impact, Retina

20

Copyright© 2013 KRvW Associates, LLC

Dynamic validation

Time to verify all those security requirements and
functional specs
–QA will have easiest time building test cases with these
–Fault injection often used
–Helps if requirements verbiage is actionable

21

Copyright© 2013 KRvW Associates, LLC

Automation, what’s that?

Dearth of available tools
–Some process monitors are available and helpful
–Test cases are easiest to define

22

Copyright© 2013 KRvW Associates, LLC

Risk-based testing

Time to animate those “nightmare scenarios” you
uncovered in the architectural risk analysis
–Start with abuse cases, weakness scenarios
–Describe and script them
–Try them one step at a time

Begin at the beginning and go on till you come to
the end; then stop. − Lewis Carroll

23

Copyright© 2013 KRvW Associates, LLC

Automation, what’s that?

Dearth of available tools
– It’s rare that these scenarios lend themselves to general

purpose automation
–Test cases are really tough to define

24

Copyright© 2013 KRvW Associates, LLC

Additional considerations

There’s plenty other things to think about
–Threat modeling
–Results tracking
–Five stages of grief
–Knowledge sharing
– Improvement and optimization

25

Copyright© 2013 KRvW Associates, LLC

Threat analysis can help

Who would attack us?
What are their goals?
What resources do they have?
How will they apply technology?
How much time do they have?

Answers can help in understanding feasibility of
attacks

26

Copyright© 2013 KRvW Associates, LLC

Results tracking

Lots of good reasons to
track results
–Use again during regression

testing
–Ensure closure
–Knowledge transfer of

lessons learned
–Justify time spent

Tools can help
Test Director

27

Copyright© 2013 KRvW Associates, LLC

Five stages of grief

Security testers are often the bearers of bad news
–Learn from the Kübler-Ross model

lDenial, anger, bargaining, depression, acceptance
lWatch out for denial and anger!

–Understand and anticipate
–Diplomacy and tact will optimize likelihood of

acceptance

28

Copyright© 2013 KRvW Associates, LLC

Knowledge sharing

Show the dev team how
their code broke
–Best way to learn
–Public humiliation is a

powerful motivator

If a picture tells a
thousand words, a live
demonstration shows a

thousand pictures

29

Copyright© 2013 KRvW Associates, LLC

Improvement and optimization

Immediate goal is to find defects in today’s
software, but preventing future defects is also a
worthy goal
–Formalize lessons learned process
–Consider papers, blog entries, etc., to share new findings

(once fixed) with others
–Learn from medical community model

30

Copyright© 2013 KRvW Associates, LLC

Getting started

Some general tips and guidelines
– Interface inventory
–Let risk be your navigator
–Get the right tools for the job
–Scripting skills can be very valuable

31

Copyright© 2013 KRvW Associates, LLC

Interface inventory

Start by enumerating every interface, API, input,
output, etc.
–This should be done per module as well as per application
–List everything
–Some call this the “attack surface”
–This list should become a target list as you plan your tests
–Flow/architecture charts are useful

32

Copyright© 2013 KRvW Associates, LLC

Risk navigation

The target list is probably too big to do a thorough
job
–Prioritize focus in descending risk order
–Follow the most sensitive data first
–Those flow charts will set you free

See now why rigorous testing should be informed?

33

Copyright© 2013 KRvW Associates, LLC

Test scenario sources −1

Develop test scenarios throughout SDLC
–Start at requirements, such as

lUS regs: GLBA, SOX, HIPPA
l ISO 17799 / BS 7799
lPCI
lOWASP’s WASS

–Warning, they’re often fuzzy (no pun…)
lSOX says, “Various internal controls must be in place to curtail

fraud and abuse.”

34

Copyright© 2013 KRvW Associates, LLC

Test scenario sources −2

Also look elsewhere in SDLC for test cases
–Abuse cases

lMany cases translate directly to test cases
–Architectural risk analysis

lSeek the doomsday scenarios

–Code
lCompliance with coding standards

35

Copyright© 2013 KRvW Associates, LLC

Deployment testing

Rigorous testing of environment
–Network services
–File access controls
–Secure build configurations
–Event logging
–Patch management
–Test for all of this

lNot your job? Who is doing it? The pen testers?

36

Copyright© 2013 KRvW Associates, LLC

References

Some useful additional reading
–“Adapting Penetration Testing for Software Development

Purposes”, Ken van Wyk, http://BuildSecurityIn.us-
cert.gov

–“The Security Development Lifecycle”, Michael Howard
and Steve Lipner

–Fuzz testing tools and techniques http://
www.hacksafe.com.au/blog/2006/08/21/fuzz-testing-
tools-and-techniques/

37

Copyright© 2013 KRvW Associates, LLC

Kenneth R. van Wyk
KRvW Associates, LLC

Ken@KRvW.com
http://www.KRvW.com

38

